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Abstract. In the field of medical image segmentation, the Mamba-UNet is seen
as a diamond in the rough due to its robust capability in capturing long-range
interactions within images while maintaining linear computational complexity.
However, the existing Mamba-based U-shaped networks utilize direct skip con-
nections, which limit the exploration of features at different scales. To address this
issue, we propose the Transmission-Enhanced Mamba-UNet (TMU) by incorpo-
rating a DCA (Double Cross Attention) block between the encoder and decoder,
aiming to enhance skip connections in mamba-based networks. This design ele-
vates segmentation performance by introducing an attention mechanism into the
skip connection, effectively fusing features from different layers and improving
the model’s capacity to capture intricate details and contextual information. We
also explored the performance of DCA blocks with different inputs and outputs to
find the best combination. Experimental results on the publicly available ACDC
dataset and ISIC dataset demonstrate that TMU outperforms the Mamba-UNet
model across all evaluation metrics when utilizing pretrained models. Especially
in IoU, the TMU model with pretrained weights saw improvements of 1.56% on
the ACDC dataset and 0.68% on the ISIC dataset. Identically, without pretrained
weights, it exhibited improvements of 4.73% and 0.67%.

Keywords: Medical Image Segmentation · Mamba · State Space Models · U-Net

1 Introduction

Convolutional Neural Networks (CNNs) are foundational in deep learning for image
processing, with the U-Net architecture [18] achieving notable success in medical image
segmentation through its encoder-decoder structure that captures both global and local
contextual information.

The Transformer architecture [20], initially designed for natural language processing
(NLP), has been adapted to computer vision with the Vision Transformer (ViT) [8]. ViT
processes images as sequence data, allowing it to capture global visual dependencies
that are often missed by CNNs. Building on ViT, Transformer-based architectures such
as TransUNet and SwinUNet [6] have been proposed to enhance image segmentation
performance.
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Mamba introduces a novel architecture to address the challenges of computational
complexity and large-scale data training requirements, featuring selective processing and
a simplified State Space Model (SSM) for effective context compression and dynamic
behavior adjustment. [10] The Vision Mamba (VMamba) model [16] extends Mamba’s
capabilities to computer vision, incorporating bidirectional SSM and place embedding
techniques for precise visual recognition. VMamba has shown superior performance in
benchmarks, particularly in computational and memory efficiency. Mamba-UNet [21]
combines the strengths of U-Net and Mamba, ensuring seamless connectivity and infor-
mation flow between the encoder and decoder paths. To enhance performance further, we
propose TMU, which introduces a Double Cross-Attention (DCA) block to the Mamba-
UNet. This block integrates channel Cross-Attention (CCA) and spatial Cross-Attention
(SCA) [2] between the Vision State Space (VSS) blocks of Mamba-UNet. The aim is to
capture channel and spatial dependencies between multi-scale encoder features, thereby
enhancing the model’s ability to process image features.

We summarize the contributions below:
- We introduced a DCA block to Mamba-UNet, which significantly enhances

image segmentation performance through a dual mechanism of double cross attention,
thereby improving feature extraction and fusion capabilities. Comprising Channel Cross-
Attention (CCA) and Spatial Cross-Attention (SCA), the DCA block refines the accuracy
of image segmentation tasks, particularly for complex medical images.

- We conducted extensive exploration into different configurations of the DCA
block’s input and output to optimize the model further. This focused exploration aimed
to identify the most effective strategies to reinforce the skip connection within the model,
aiming for greater performance gains and improved precision in handling complex
segmentation tasks.

- Our model has demonstrated superiority over traditional U-Net, Swin-UNet, and
Mamba-UNet on both the ACDC and ISIC datasets, particularly excelling in medical
image segmentation tasks. This success underscores its potential as a valuable tool in
medical imaging analysis.

2 Approach

2.1 Overview

The architecture of TMU, as shown in Fig. 1(a), begins with 1 × H × W image data
that is initially processed through a patch partition layer used in Vision Transformers
and Vision Mamba. This layer prepares the data for subsequent linear embedding, where
the dimensions are refined to H/4 × W/4 × 16 and then reshaped into H/4 × W/4 ×
c to optimize feature representation. The data then flows through a pair of VSS blocks
dedicated to extracting features without resizing the tensor. This is followed by a series
of three stages, each of which includes a patch merging layer that downsamples the data
before it is processed by another pair of VSS blocks. After these transformations, the
model’s input adopts the configuration of H/32 × W/32 × 8c as it enters the decoder.
Within the decoder, the data undergoes three additional stages, each characterized by a
patch expanding operation and the application of two VSS blocks for feature extraction.
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TMU: Transmission-Enhanced Mamba-UNet for Medical Image 3

The final stage involves one last patch expansion and a linear projection, culminating in
the generation of a detailed segmented image with dimensions H × W × Class.

In parallel with the initial VSS block processing, the data is also channeled through
a DCA block. Here, it undergoes a series of transformations to match the shape of the
VSS block output. It then experiences channel cross-attention and spatial cross-attention
mechanisms designed to enhance feature integration. The output from these attention
mechanisms is subjected to various up-sampling techniques before being integrated into
the corresponding stages of the model. This innovative approach of replacing traditional
U-Net feature extraction blocks with CNNs or Transformers (in the form of VSS blocks)
and incorporating a DCA block enriches the model’s capability to capture multi-scale
dependencies in features. The DCA block plays a pivotal role in bridging the semantic
gap between encoder and decoder features by continuously focusing on the interplay
of channel and spatial relationships across the encoding process. This refined attention
to feature connectivity leads to an enhanced skip connection, which is essential for the
model’s overall performance and accuracy in image segmentation tasks.

Fig. 1. (a) The architecture of TMU, which is composed of encoder, bottleneck, decoder and skip
connections with a DCA block. (b) The architecture of DCA block, which is composed of average
pooling layer, linear projection layer, channel cross-attention layer and spatial cross-attention
layer.

2.2 DCA Block

In the DCA block architecture shown in Fig. 1(b), the initial stage involves the extraction
of patches from four distinct multi-scale encoder stages, commonly referred to as skip
connection layers. To accommodate varying scales of encoders, the patches are derived
using 2D average pooling with a pool size and stride denoted by � (Psi). Subsequently,
these 2D patches undergo a projection process utilizing 1 × 1 depth-wise convolutions.

Subsequent to this extraction, the features are bifurcated into two pathways. The
first pathway involves an additive combination with the output from the channel cross-
attention block before proceeding to the subsequent stage. The second pathway channels
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of the features were input to the channel cross-attention block. Within this block, dis-
tinct tokens are generated along the channel dimension to serve as keys and values,
while the queries are constructed using Ti. Notably, while linear projections are con-
ventionally employed for self-attention mechanisms, recent advancements have seen
the successful integration of convolutional operations. This integration not only intro-
duces an element of locality to the self-attention process but also significantly diminishes
the computational complexity. Specifically, the utilization of depth-wise convolutions
for self-attention is advantageous as it captures local information with minimal addi-
tional computational overhead. Leveraging these insights, the Depth-wise Block Atten-
tion (DBA) block in our model supplants all linear projections with 1 × 1 depth-wise
convolutional projections.

The process then advances to the spatial cross-attention module, which similarly
splits the features into two streams. One stream merges with the output and feeds into
the next stage, while the other stream enters the spatial cross-attention block. This block
performs layer normalization [3] and concatenation along the channel dimension.

Ti = DConv1DEi (Reshape(AvgPool2DEi (Ei))) (1)

Qi = DConv1DQi (Ti) (2)

K = DConv1DK (TC) (3)

V = DConv1DV (TC) (4)

CCA(Qi, K, V ) = Soft max(
QT

i K√
C

)V T (5)

In contrast to the Channel Cross-Attention (CCA) module, the spatial cross-attention
block utilizes the concatenated tokens as both queries and keys, assigning each individual
token i as the corresponding value. The queries, keys, and values are all subjected to 1
× 1 depth-wise projections.AQ1

Q = DConv1DQ(T C) (6)

K = DConv1DK (T C) (7)

Vi = DConv1DVi (T i) (8)

where Q ∈ RP×Cc , K ∈ RP×Cc , Vi ∈ RP×Ci are the projected queries, keys and values,
respectively. Then, SCA can be expressed as:

SCA(Q, K, Vi) = Soft max(
QKT

√
dk

)Vi (9)

This double cross-attention mechanism is a pivotal component of our model, enhancing
its ability to process and integrate multi-scale features effectively.
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Fig. 2. Flowchart of the VSS Block structure

2.3 VSS Block

The VSS block, as shown in Fig. 2, originating from VMamba, serves as the cornerstone
module of our model, depicted in the accompanying figure. Post-layer normalization
[3], the input bifurcates into dual branches. The inaugural branch input through a linear
layer, culminating in an activation function. Concurrently, the secondary branch sub-
jects the input to a linear layer, followed by depthwise separable convolution and an
activation function, before ushering it into the 2D Selective Scanning (SS2D) module
for augmented feature extraction. Ensuing this, features undergo normalization via layer
normalization, and an element-wise operation is executed with the first branch’s output
to amalgamate the two trajectories. In the final stage, a linear layer amalgamates the fea-
tures, which, in conjunction with the residual connection, constitutes the VSS block’s
output. For activation purposes, this paper adopts SiLU by default.

Fig. 3. Illustration of the 2D-Selective-Scan on an image. We commence by scanning an image
using CSM (scan expand). The four resulting features are then individually processed through the
S6 block, and the four output features are merged (scan merge) to construct the final 2D feature
map.

The SS2D Component The SS2D component is a tripartite structure consisting of the
ScanExpanding operation, the S6 block, and the ScanMerging operation. Figure demon-
strates the ScanExpanding operation, which systematically unfolds the input image into
sequences across four distinct trajectories: from top-left to bottom-right, bottom-right
to top-left, top-right to bottom-left, and bottom-left to top-right. These sequences are
subsequently processed by the S6 block, which performs comprehensive feature extrac-
tion to ensure that information from each direction is meticulously scanned, thereby
capturing a spectrum of features. Following this, as depicted in Fig. 3, the ScanMerging
operation consolidates the sequences from all four directions, summing and amalgamat-
ing them to revert the output image to its original dimensions. Originating from Mamba
[16], the S6 module enhances the model by incorporating a selection mechanism over
S4 [17], which fine-tunes the SSM parameters in response to the input. This refinement
allows the model to discern and preserve pertinent information while discarding what is
extraneous. The pseudocode for the S6 block is delineated as Algorithm 1.
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3 Expriment and Results

3.1 Datasets

ACDC Dataset: It contains 100 short-axis MR-cine T1 3D volumes of cardiac anatomy
acquired using 1.5T and 3T scanners. The expert annotations are provided for three
structures: right ventricle, myocardium, and left ventricle. It was hosted as part of the
MICCAI ACDC challenge 2017 [4]. To comply with the input requirements of the
segmentation backbone networks, all images were resized to 224 × 224.

ISIC Dataset: The ISIC dataset is an extensively recognized public medical imaging
repository, dedicated to the diagnosis and investigation of dermatological conditions.
It features an extensive array of skin disease imagery, covering a broad spectrum of
skin afflictions and abnormalities. The dataset encompasses a diverse range of skin
pathologies [11], including but not limited to melanoma, squamous cell carcinoma, and
basal cell carcinoma. Comprising a total of 2,694 dermatological images accompanied
by their respective masks, the dataset has been meticulously partitioned into a training
set and a validation set with a proportional distribution of 4:1. To comply with the input
requirements of the segmentation backbone networks, all images were resized to 224 ×
224.

3.2 Implementation Details

Environment: The task was undertaken within an environment configured on Ubuntu
20.04, utilizing Python 3.11 and PyTorch 2.2.1, alongside CUDA 12.2, leveraging the
capabilities of an Nvidia GeForce RTX 3090 GPU and an Intel(R) Xeon(R) Gold 6133
CPU. The entire process, including data handling, model training, and inference, was
completed in about 3 h. The dataset was prepared for 2D image segmentation tasks,
and the Mamba-UNet model was trained for 10,000 iterations using a batch size of 32.
We have opted for a hybrid loss function that combines the Cross-Entropy Loss (CE
Loss) and the Dice Loss, with each contributing equally to the overall weight of the
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loss function. An SGD optimizer was selected [5], configured with a learning rate of
0.01, momentum at 0.9, and weight decay of 0.0001. The model’s performance was
monitored on a validation set after every 50 iterations, with the best-performing model
weights being saved to ensure continual improvement and refinement of the model.

Baseline: To ensure a fair assessment, U-Net, Swin-UNet, and Mamba-UNet models
were all trained using the same set of hyperparameters. This standardized approach
facilitated a direct comparison with the TMU and other established baseline methods.

3.3 Evaluation Metrics

To measure the performance of the model, we have employed three metrics: Intersection
over Union (IoU), Dice coefficient, and Sensitivity. The performance of the model is
considered better as these metrics approach a value of 1. The formulas for calculating
these metrics are as follows:

Intersection over Union (IoU):

IoU = TP

TP + FP + FN
(10)

where TP (True Positives) is the number of correctly predicted positive pixels, FP (False
Positives) is the number of incorrectly predicted positive pixels, and FN (False Negatives)
is the number of actual positive pixels that were not predicted correctly.

Dice Coefficient:

Dice = 2 × TP

2 × TP + FP + FN
(11)

The Dice coefficient is similar to the IoU but gives twice the weight to the number of
true positives, which can be beneficial in cases where the number of false positives and
false negatives are high.

Sensitivity (also known as recall or true positive rate):

Sensitivity = TP

TP + FN
(12)

Sensitivity measures the proportion of actual positives that were correctly identified by
the model, which is particularly important in cases where missing positive instances can
have significant consequences.

3.4 Comparative Studies

The results indicate that on the ACDC dataset, when using pre-trained models, our model
outperforms both U-Net, Swin-UNet, and Mamba-UNet across all evaluated metrics—
mean Dice, IoU, and sensitivity. The pre-trained Mamba-UNet achieves a mean Dice
of 0.9019, an IoU of 0.8272, and a sensitivity of 0.9098, which are significant improve-
ments over the non-pre-trained versions of U-Net (mean Dice of 0.7717, IoU of 0.6424,
and sensitivity of 0.7679) and Swin-UNet (mean Dice of 0.8858, IoU of 0.8026, and
sensitivity of 0.8968). The enhanced performance of the pre-trained model demonstrates
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the benefits of transferring knowledge from large datasets, which allows the model to
better generalize and adapt to the specific characteristics of the medical imaging data.
The pre-trained model is able to leverage the learned features and representations from
a vast amount of annotated data, leading to a more robust and accurate segmentation
model (Tables 1 and 2).AQ2

Table. 1. Performance analysis of different models under different datasets

Type Model ACDC ISIC

Dice IoU Sensitivity Dice IoU Sensitivity

Pretrained U-Net 0.9005 0.8264 0.9065 0.8649 0.7679 0.9355

Swin-UNet 0.8858 0.8026 0.8968 0.8744 0.7846 0.9329

Mamba-UNet 0.8922 0.8132 0.9008 0.8875 0.8061 0.9285

TMU(ours) 0.9019↑ 0.8272↑ 0.9098↑ 0.8916↑ 0.8121↑ 0.9519↑
Unpretrained Swin-UNet 0.7717 0.6424 0.7679 0.8435 0.7471 0.8625

Mamba-UNet 0.8014 0.6859 0.7990 0.8329 0.7438 0.8311

TMU(ours) 0.8322↑ 0.7237↑ 0.8356↑ 0.8437↑ 0.7485↑ 0.8681↑

And on the ISIC dataset, our model also demonstrates superior performance com-
pared to U-Net, Swin-UNet, and Mamba-UNet when equipped with pre-trained weights.
This enhancement underscores the significance of utilizing pre-trained weights to achieve
optimal results. In scenarios where pre-trained weights are not loaded, our model’s per-
formance remains competitive, outpacing Mamba-UNet and only marginally lagging
behind Swin-UNet. These findings suggest that while our model’s efficacy can rival
that of Mamba-UNet in certain contexts, it may exhibit a slight deficit in comparison to
Swin-UNet. The importance of Mamba’s pre-trained weights cannot be overstated, as
they play a pivotal role in enhancing the model’s performance and facilitating successful
data transfer.

The original image, ground truth, and segmentation results of different networks are
shown in Fig. 4.

3.5 Studies on Skip Connection Strategies

In previous variations of the U-Net architecture, there were only three skip connections
connecting the encoder to the decoder [15]. However, just before entering the bottleneck
layer, an additional downsampling step was introduced. Curiously, we decided to pass the
result of this downsampling through a DCA block, and to our surprise, this modification
improved the overall performance.

Our investigation didn’t stop there. We continued experimenting and discovered that
when we applied four downsampling steps and fed only the outputs from the last three
to the decoder, the segmentation results were optimal. This modified architecture strikes
a delicate balance between semantic information and fine-grained details, ultimately
leading to more accurate segmentation outcomes.
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Fig. 4. Results of segmentation on ISIC and ACDC

Table. 2. Results on Skip Connection Strategies

Features In Features Out Dice IoU Sensitivity

3 3 0.8957 0.8156 0.8967

4 4 0.8960 0.8186 0.9044

4 3(ours) 0.9019 0.8272 0.9098

In previous variations of U-Net, there were only three skip connections from the
encoder to the decoder. However, just before entering the bottleneck layer, an additional
downsampling step was introduced. We then experimented by passing the result of
this downsampling through a DCA block. Surprisingly, this improved the performance.
Continuing our investigation, we found that when we applied four downsampling steps
and fed only the outputs from the last three to the decoder, the results were optimal.

The modified architecture, which incorporates these insights, strikes a balance
between semantic information and fine-grained details, leading to better segmentation
outcomes.

4 Conclusion

Our contributions extend beyond the immediate improvements to the Mamba-UNet
model. The TMU’s adaptability to various medical image segmentation tasks and its com-
putational efficiency make it a promising candidate for broader applications in the med-
ical imaging field. The model’s architecture serves as a foundation for future research,
opening new avenues for the development of advanced segmentation models that can
handle the complexities of medical imaging data with greater precision and reliability.
In summary, TMU stands as a significant advancement in the realm of medical image
segmentation, offering a robust and efficient solution that leverages the strengths of both
U-Net and Mamba models, while introducing a novel approach to feature extraction and
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10 X. Yang et al.

integration through the double-cross-attention mechanism. The model’s exceptional per-
formance and potential for adaptation to diverse tasks position it as a valuable tool in
the medical imaging community, contributing to improved diagnostics and patient care.
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