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Abstract. With the advancement of the Internet of Things (IoT) tech-
nologies, there has been a rapid increase in the volume of IoT data, lead-
ing to escalating costs in storage, transmission, and analytics. The ben-
efits of conventional data deduplication schemes are diminishing when
applied to IoT data that is similar but distinct, necessitating the devel-
opment of new approaches to accommodate these new scenarios. This
paper proposes a deduplication and approximate analytics scheme for
encrypted IoT data in fog-assisted cloud storage. The scheme is based
on Generalized Deduplication(GD), Message Locked Encryption(MLE),
Homomorphic Encryption(HE), and ciphertext conversion techniques.
We employ GD to divide similar but distinct IoT data into bases and
deviations, and perform deduplication on the encrypted base to achieve
efficient storage while protecting data privacy. Additionally, we utilize
Hybrid Homomorphic Encryption(HHE) techniques to convert the sym-
metric ciphertext of IoT data into homomorphic ciphertext, facilitating
approximate analytics while ensuring privacy protection of IoT data in
fog-assisted cloud storage and reducing the computation overhead on IoT
devices.

Keywords: Fog-assisted cloud storage, encrypted deduplication, IoT
data, homomorphic encryption, approximate analytics

1 Introduction

In recent years, as IoT technology has developed, IoT devices have gained more
widespread application [21,24]. However, with the extensive proliferation of IoT
devices, a massive volume of data has also emerged. This abundance of IoT data
poses numerous challenges for IoT systems, such as increased communication
overhead between devices and servers, greater storage costs, and higher data
transmission delays and analytics times. These issues have led to the adoption
of two solutions: iterative storage and transfer storage [9]. Iterative storage can
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cause problems such as difficulty in data traceability and compromised data
integrity [31]. Transfer storage has introduced fog storage [30], which can reduce
latency and bandwidth consumption, alleviating the pressure on devices and
servers. In light of these challenges, many companies, such as Huawei and AT&T
, have employed fog-assisted cloud storage architectures to manage IoT data
[27,33].

Fig. 1: Environmental monitoring IoT data.

As illustrated in Fig. 1, each IoT data record primarily consists of two parts.
One part is the data monitored by the device, such as carbon monoxide and
liquid petroleum gas; the other part is information about the device, such as
the device’s name or number. Most IoT data are highly similar but distinct,
primarily because the devices generating the data are of the same type. The
minor variations in highly similar data usually stem from differences in geo-
graphical location or time, or both. Additionally, the inherent periodicity of
IoT device operations results in significant redundancy within IoT data [8]. Re-
garding storage, the large volume of duplicate content in IoT data makes data
deduplication and compression essential strategies for reducing storage overhead.
Deduplication techniques, which use data blocks of several kilobytes as units for
redundancy elimination, can efficiently remove duplicate data to enhance stor-
age performance. However, conventional deduplication schemes can only detect
and remove identical data blocks, not those that are highly similar but distinct.
Compression is divided into lossy compression, which can result in data loss, and
lossless compression, which typically involves considerable computational effort
and is challenging to implement on resource-constrained IoT devices.

Considering that conventional data deduplication and compression schemes
are no longer applicable and given the characteristics of IoT data, Vestergaard et

https://www.huawei.com/en
https://www.att.com/
https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-
132k/data
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al. [29] proposed Generalized Deduplication(GD) to eliminate redundant parts
in data that are similar but distinct. This is a lossless compression scheme. This
approach uses a transformation function to separate data into bases and de-
viations, which has been effective for IoT data [28]. GD is based on heuristic
algorithms that generate permutation and transformation functions to process
IoT data. The base includes the same bits among different data, while the devi-
ations are the different bits. Since the base is consistent and the high similarity
of IoT data introduces substantial redundancy within it, deduplicating the bases
can significantly reduce storage overhead. Additionally, data processed through
GD retains randomly accessible features and can undergo approximate analyt-
ics without decompression [28]. Furthermore, since IoT data often contains a
large amount of sensitive information, such as health data and identity infor-
mation from some devices, directly uploading plaintext data to fog nodes and
cloud servers can easily lead to privacy breaches. Therefore, IoT data is typically
encrypted before being uploaded.

However, data encryption can affect deduplication and computational anal-
ysis. Encrypted data cannot be processed for deduplication. How to perform
deduplication on encrypted data is an important issue. And, IoT data holds
significant value for data analytics, such as in medical health diagnostics or en-
vironmental monitoring. Conventional encryption schemes render the data non-
computable after encryption. A key issue is how to make IoT data computable
while ensuring data privacy. Moreover, IoT data contains a large amount of
redundant content. By deduplicating the data before performing approximate
analytics, we can achieve results that, while not perfectly accurate, are usually
close enough to the true values to be practical and valuable for real-world appli-
cations. In terms of IoT data analytics, existing solutions perform approximate
analytics on plaintext, which can lead to privacy concerns [14]. How to reduce
the computation overhead on IoT devices and the communication overhead be-
tween IoT devices and fog nodes is also a critical issue. Although Homomorphic
Encryption(HE) allows for approximate analytics on ciphertexts, directly using
it significantly increases the computation burden on IoT devices and results in
substantial communication overhead. We will explore methods for deduplication
and approximate analytics of encrypted IoT data.

1.1 Contribution

In this paper, we propose a deduplication and approximate analytics scheme
for encrypted IoT data in fog-assisted cloud storage. We combine GD and Mes-
sage Locked Encryption(MLE) to achieve encrypted deduplication for similar
but distinct IoT data in fog-cloud storage, enhancing storage performance while
protecting data privacy. Specifically, we use GD to divide data into bases and de-
viations. Given the large volume and high redundancy of the bases, we perform
MLE-based encrypted deduplication on it to save storage overhead. Since the
deviations occupy little data and have a low duplication rate, we do not perform
deduplication on the deviations. Additionally, we introduce Hybrid Homomor-
phic Encryption(HHE) to enable approximate analytics of encrypted IoT data
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using K-modes in fog-assisted cloud storage. To save computation and commu-
nication overhead, we perform MLE on bases and HE on the relatively small
symmetric encryption keys. Devices send the encrypted bases and encrypted
keys to fog nodes, and the encrypted deviations to the cloud server. Approx-
imate analytics is primarily conducted at the fog nodes. During approximate
analytics, the fog node first re-encrypts the symmetric ciphertext into homo-
morphic ciphertext. Then, it uses the homomorphically encrypted MLE keys to
perform symmetric decryption on homomorphic ciphertext. This ensures that
the conversion from symmetric ciphertext to homomorphic ciphertext protects
data privacy without exposing the plaintext. After conversion to homomorphic
ciphertext, the fog nodes can conduct approximate analytics on it. In summary,
we make the following contributions:

1. We combine GD and MLE to achieve encrypted deduplication of similar but
distinct IoT data on fog nodes, providing privacy protection and efficient
storage.

2. We employ a ciphertext transformation technique to facilitate approximate
analytics on encrypted IoT data, which also reduces the computation over-
head for IoT devices. During the approximate analytics process, we use HHE
to convert symmetric ciphertext into homomorphic ciphertext. This allows
for the direct execution of K-modes clustering operations on the ciphertext,
enabling approximate analytics.

3. We conduct a security analysis of our scheme, demonstrating its security.
Additionally, compared to non-deduplicated data, our scheme reduces stor-
age overhead by approximately 85% through encrypted deduplication. It
also employs HHE, which decreases the communication overhead between
IoT devices and fog nodes by about 95%, and reduces the time for IoT de-
vices to encrypt data by around 88%. Moreover, our scheme also achieves
approximate analytics of homomorphically encrypted IoT data with accept-
able efficiency.

1.2 Paper organization

The remainder of this paper is organized as follows. Section 2 discusses the back-
ground and motivation of our work. Section 3 describes the preliminary knowl-
edge relevant to our study. In Section 4, we provide an overview of our scheme,
including the system architecture and threat model. Section 5 is dedicated to a
security analytics of our scheme. In Section 6, we evaluate the performance of
our scheme. Finally, we conclude the paper in Section 7.

2 Background and motivation

This section discusses conventional encrypted deduplication, as well as more suit-
able GD schemes for IoT data. This section also covers approximate analytics.
The security and limitations of existing schemes serve as the motivation for our
research work.



Deduplication and approximate analytics for encrypted IoT data 5

2.1 Conventional encrypted deduplication

Data deduplication, a technique that retains only one copy of original data and
uses pointers or references for identical data, is highly effective for identifying and
eliminating redundancy, thus significantly enhancing system storage efficiency.
Encrypted deduplication combines encryption and deduplication technologies
to achieve efficient data storage while protecting data privacy. Convergent en-
cryption (CE) is the first scheme to implement encrypted deduplication [5]. CE
generates a key based on the plaintext content, thus identical plaintexts corre-
spond to the same ciphertext, achieving the purpose of encrypted deduplication.
Subsequently, Bellare et al. [2] formalizes CE as MLE and provided a security
definition for it.

However, as mentioned in [16], MLE is susceptible to offline brute-force at-
tacks(BFAs) [16] when the plaintext entropy is low. An adversary can enumerate
all possible plaintexts and compare them with corresponding ciphertexts to guess
the correct plaintext message. Considering this issue, Keelveedhi et al. [16] pro-
poses server-aided MLE, where the key is derived from both the message itself
and a key server. As long as adversaries cannot access the key server, they are
unable to perform offline BFAs. Additionally, the key server can perform rate
limiting to resist online BFAs. Subsequent schemes [11, 18, 19, 22, 26] are based
on server-aided MLE. However, these encrypted deduplication schemes are not
suitable for fog-assisted cloud storage architectures and are incapable of handling
similar but distinct IoT data.

2.2 Generalized deduplication

Data compression is categorized into lossy and lossless compression. While lossy
compression can achieve higher compression rates, it risks data loss. On the
other hand, conventional lossless compression schemes, such as Zstd [6] and
bzip2 [25], become less effective when applied to smaller data blocks. Therefore,
conventional data deduplication and compression techniques are not suitable for
IoT data, necessitating new technologies to improve the storage and analytics
efficiency of IoT data.

GD [29] has developed a new approach based on the principles of data com-
pression and deduplication to handle IoT data, which often consists of similar
but distinct entries. The main technique in GD is using a transformation function
to separate data into bases and deviations. The main process of GD is illustrated
in Fig. 2.
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Fig. 2: The main process of generalized deduplication.
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In our scheme, we employ the GD algorithm at the device end to process IoT
data, obtaining the data’s bases and deviations. Given the high redundancy in
the bases and low redundancy in the deviations, we perform deduplication on
the bases while retaining all deviations.

2.3 Approximate analytics

Approximate analytics comprises a range of computational techniques that do
not guarantee precise results but are sufficient for practical applications [23].
The underlying idea of approximate analytics is that while precise analytics is
possible, it often consumes excessive resources. Approximate analytics, on the
other hand, can significantly conserve resources while delivering results within an
acceptable range. For instance, in the case of the K-means clustering algorithm,
accepting a 5% accuracy loss can save about 50 times the resources compared
to a precise analytics.

Clustering algorithms are a type of unsupervised learning algorithm in ma-
chine learning. Without labeled information, clustering algorithms identify the
inherent patterns in data and group it into multiple classes or clusters. Each
cluster or class contains data that are highly similar to each other but distinctly
different from data in other clusters.

Currently, many schemes [7,32] use HE for machine learning on different data
sets, but no schemes exist for machine learning on homomorphically encrypted
similar but distinct IoT data. Additionally, there are no schemes for machine
learning on encrypted IoT data within fog-assisted cloud storage. Given the
characteristics of IoT data, which are similar but distinct and contain a lot of
redundancy, approximate analytics is more suitable.

In our scheme, we use the K-modes clustering algorithm to perform approx-
imate analytics on similar but distinct IoT data.

3 Preliminaries

This section provides an overview of HE, MLE, Fasta, and K-modes.

3.1 Homomorphic encryption

As noted by Craig Gentry, the first scholar to construct a FHE scheme in [10], HE
is a method that allows data processing to be delegated without disclosing access
rights to the data. The FHE scheme primarily includes the following algorithms:

• HE.KeyGen(λ): It takes a security parameter λ as input and outputs a public
key pk and a private key sk.

• HE.Enc(m, pk): It takes a public key pk and a plaintext message m as input
and outputs the ciphertext c of m.

• HE.Dec(c, sk): It takes a private key sk and a ciphertext c of m as input and
outputs the plaintext m.
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• HE.Add(c1, c2): It takes the ciphertexts c1 and c2 of m1 and m2 as input
and outputs the ciphertext cadd of m1 +m2.

• HE.Mul(c1, c2): It takes the ciphertexts c1 and c2 of m1 and m2 as input
and outputs the ciphertext cmul of m1 ∗m2.

• HE.Rot(c, n): It takes the ciphertexts c and a number of positions n as input
and outputs the rotated ciphertext cr.

3.2 Message locked encryption

MLE generates encryption keys based on the content of the plaintext, ensuring
that identical plaintexts produce identical ciphertexts. This property enables
encrypted deduplication. MLE typically includes the following algorithms:

• MLE.KeyGen(m): It takes a message m as input and outputs a key k.
• MLE.Enc(m, k): It takes a message m and a key k as input and outputs a
ciphertext c.

• MLE.Dec(c, k): It takes a ciphertext c and a key k as input and outputs a
message m.

3.3 Fasta

From the proposal of HHE [20], many scholars have evaluated existing symmetric
encryption schemes. Although certain progress has been made, existing symmet-
ric encryption schemes are still not suitable for HE. Therefore, many scholars
have begun to propose symmetric encryption schemes suitable for HE. Fasta [3]
is one such scheme. Based on HElib implementation, Fasta can be seen as a
variant of Rasta [4], but with improvements to enable efficient implementation
on BGV. The Fasta stream encryption mainly includes the following algorithms:

• Fasta.KeyGen(λ): It takes a security parameter λ as input and outputs a
key K.

• Fasta.KeySGenε(K): It takes a key K as input and outputs a keystream
k1, k2, k3, k4, k5.

• Fasta.Enc(k1, k2, k3, k4, k5,m): It takes a keystream k1, k2, k3, k4, k5 and a
message m as input and outputs a ciphertext c of m.

• Fasta.Dec(k1, k2, k3, k4, k5, c): It takes a keystream k1, k2, k3, k4, k5 and a ci-
phertext c as input and outputs a message m.

3.4 K-modes

Despite being a simple and efficient clustering algorithm, the conventional K-
means algorithm and the improved K-means++ [1] algorithm are only suitable
for datasets with continuous attributes. For datasets with discrete attributes,
calculating the mean of clusters and the Euclidean distance between points be-
comes inappropriate. To overcome the drawbacks of partition-based clustering

https://github.com/homenc/HElib
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algorithms like K-means, Huang et al. [13] proposed the K-modes clustering
algorithm.

As an extension of K-means, K-modes uses Hamming distance and is suitable
for datasets with discrete attributes. The concept of K-modes is relatively simple,
and its time complexity is lower than that of K-means and K-medoids [15]. The
K-modes algorithm mainly includes the following steps:

• Dis(di, dj): This function is used to calculate the Hamming distance. It takes
two data points di and dj from the dataset as input and outputs the Ham-
ming distance between the two data points.

• initModes(D, k): This function is used to initialize the cluster centers. It
takes a dataset D and the initial number of desired cluster centers k as
input and outputs the initially selected cluster centers C.

• assignPToM(D,C): This function is used to assign data points to the cluster
centers. It takes a dataset D and the cluster centers C as input, and outputs
the set A where each data point is assigned to the nearest cluster center
based on distance.

• update(D,C,A): This function is used to update the cluster centers. It takes
a dataset D, cluster centers C, and the set of assignments A as input, and
outputs the new cluster centers Cnew and the updated set of assignments
Anew.

4 Our scheme

4.1 Main idea

There are several issues that need to be resolved in the deduplication and ap-
proximate analytics for encrypted IoT data.

The first issue is how to encrypt and deduplicate similar but distinct IoT data
to save storage costs and protect privacy. Given the large amount of redundancy
in IoT data, directly storing this data can result in significant storage costs.
Therefore, it is necessary to process the IoT data to remove redundant content.
However, if the deduplicated data is stored in plaintext, it increases the risk of
data breaches. To address this, we apply MLE to perform encrypted deduplica-
tion on similar but distinct IoT data. We first use GD to separate similar but
distinct IoT data into bases and deviations. MLE and Fasta are combined to en-
crypt and deduplicate the bases, while Fasta is used to encrypt the deviations.
The encrypted bases are stored in the fog nodes, and the encrypted deviations
are stored in the cloud server. This is because the bases tend to have a higher
repetition rate and occupy less space after deduplication, yet they contain more
information. In contrast, deviations contain less information. By storing the ci-
phertexts of the bases in the fog nodes, it facilitates subsequent approximate
analytics by the fog nodes using the ciphertexts of the bases.

The second issue is how to perform approximate analytics on encrypted IoT
data. Conventional symmetric encryption, while efficient, does not permit com-
putations on ciphertext. To address this, we employ HE to secure the data. HE
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allows for addition and multiplication operations performed on ciphertexts to
yield the same result as if these operations were performed on the plaintext
and then encrypted. Consequently, IoT data encrypted with HE can undergo
approximate analytics.

The third issue addresses the challenge of alleviating computational strain
on devices and reducing bandwidth overhead. HE, compared to conventional en-
cryption methods, requires greater computational resources such as CPU and
memory. Additionally, data processed through HE undergoes significant volume
expansion, increasing the computational burden on devices. Moreover, due to
the ciphertext expansion inherent in HE, transmitting data to fog nodes con-
sumes substantial bandwidth. To mitigate these issues, we employ HHE tech-
nique to transform symmetric encryption into homomorphic encryption. Devices
initially encrypt messages using a designated symmetric encryption method and
encrypt the MLE keys using the homomorphic public keys of the Crypto-service
Provider (CSP). The devices then send encrypted data and encrypted keys to
the fog nodes. Since only the keys are homomorphically encrypted, this results
in minimal expansion of the ciphertext, thus reducing communication overhead
between devices and fog nodes. Furthermore, devices primarily perform symmet-
ric encryption, which lessens their computational load. The fog nodes decrypt
the symmetrically encrypted data on a homomorphic basis, converting sym-
metric ciphertext into homomorphic ciphertext for further analytics. Fasta, a
homomorphic-friendly symmetric encryption scheme, is selected for device en-
cryption.

4.2 Architecture

This section describes the design of the framework for our scheme.
As illustrated in Fig. 3, our architecture comprises four components: IoT

device, fog node, cloud server, and CSP.

IoT Device
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data
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Deduplication bases
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HE
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�����
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(if needed)
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HE
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hamming distance

Fig. 3: The architecture of our scheme.
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• IoT device: IoT device is responsible for collecting and initially processing
data. After collecting data, the IoT device first applys GD to process the
data, resulting in bases and deviations. The IoT device uses MLE.KeyGen()
to generate keys to encrypt the bases using Fasta.Enc() and generates keys
to encrypt the deviations. The encrypted data is then sent to fog nodes and
cloud server for storage, thereby saving local storage overhead. Additionally,
the device also uses HE.Enc() to encrypt the keys and uploads the homo-
morphic ciphertext of the keys to the fog nodes.

• Fog node: Upon receiving the data from the devices, the fog nodes store
the homomorphically encrypted keys alongside the symmetrically encrypted
data. When analytics is required, these are retrieved and, using HHE tech-
niques, the symmetrically encrypted data is converted into homomorphically
encrypted data for subsequent analytics.

• Cloud server : The cloud server stores the deviations encrypted symmetrically
by the devices. If exact analytics is required, the cloud server can receive the
homomorphic ciphertext of the bases from the fog node, the homomorphic
ciphertext of the encryption key for the deviations from the IoT device, and
process them to perform exact analytics.

• CSP : The CSP manages the key pair for the HE. Additionally, during ap-
proximate analytics at the fog node, the fog node sends the homomorphically
encrypted XOR result to the CSP. The CSP decrypts it, calculates the Ham-
ming distance, and returns the result to the fog node.

4.3 Threat model

We assume that the fog node, cloud server, and CSP are all honest-but-curious
parties. In our scheme, since the homomorphic encryption public key pk used
by the devices is provided by CSP, the leakage of CSP private key sk would
enable attackers to access all data information. Therefore, it is crucial for CSP
to securely store the homomorphic encryption private key sk. Additionally, we
consider the following two types of adversaries:

• Honest but curious fog nodes and cloud servers execute our proposed scheme
faithfully, yet they attempt to extract as much information as possible based
on the stored data. Both fog nodes and cloud servers can access all data
stored within them and may try to decrypt the data to recover the original
information.

• Devices honestly execute our scheme for data upload. Since our scheme per-
forms deduplication on the server side, devices cannot carry out side-channel
attacks [12] or duplicate faking attacks.

• Honest but curious CSP execute our proposed scheme faithfully, yet it tries
to infer the original data from the decrypted XOR result.

4.4 Construction

In this section, we present the construction of the algorithms and protocols
within our scheme.
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Table 1: Major notations used in this paper.

Notation Description

k MLE key
pk, sk Key pair of CSP
πI GD permutation function
ϕk GD transformation function
b, d Bases and deviations
CHE

k Homomorphic ciphertext of MLE key
CFa

b , CFa
d Fasta ciphertext of bases and deviations

CFa,HE
b Homomorphic ciphertext of Fasta encrypted bases
Eval Ciphertext transformation function

Key generation(KG). Our scheme follows the key generation algorithms
for HE and MLE. During system setup, CSP generate homomorphic keys pk and
sk using HE.KeyGen(), and securely store the private key sk. When devices join
the system, they interact with CSP to obtain the public key pk.

Preprocessing generalized deduplication(Pre-GD). To employ the GD
suitable for the data collected by the devices, we initially select a certain number
of samples from the device-collected data for preprocessing training. We prepro-
cess the training set using the algorithm described in the [28] to determine the
appropriate sample concatenation length parameter c. Subsequently, based on
the formula Sk = Kk +N(⌈log2K⌉+ (n− k)) [28], we derive the most suitable
permutation function πI and transformation function ϕk using the training set,
and store them in the device for subsequent processing.

Generalized deduplication(GD). Initially, the device retrieves the previ-
ously stored parameters c, permutation function πI , and transformation function
ϕk, and then concatenates and inputs the collected data. Subsequently, the data
is transformed into bases and deviations. Since the bases contain the major-
ity of redundant content, it is deduplicated, meaning that only one copy of the
same data is retained. As the deviations contain less redundancy and are smaller
in volume, they are not deduplicated. Thus all deviations are preserved. After
processing, the device separates the data into the bases b and deviations d.

Data upload. As illustrated in Fig. 4, after the data has been processed
using the GD, the device uses MLE.KeyGen(m) to generate k. Then, the device
uses k and the symmetric encryption algorithm Fasta to encrypt the bases b
and deviations d, producing CFa

b and CFa
d . Subsequently, the device uses the

fog node’s public key pk to perform HE.Enc() on the key k, generating CHE
k .

Once the encryption is completed, the device sends CFa
d to the cloud server for

storage, and CFa
b along with CHE

k to the fog node for storage.
Data analytics. As illustrated in Fig. 5, when approximate analytics is

required, the fog node retrieves the stored CFa
b and CHE

k . Then, CFa
b is homo-

morphically encrypted, producing CFa,HE
b . Following this, based on the principle
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Fig. 4: Data upload. ε represents the stream key generation and encryption pro-
cesses of the Fasta stream cipher.

of converting symmetric encryption into HE within HHE, Eval(CFa,HE
b , CHE

k )

is used to transform the symmetrically encrypted CFa,HE
b into homomorphi-

cally encrypted CHE
b . Subsequently, K-modes clustering approximate analytics

is conducted. Initially, a random sample is selected from the homomorphically
encrypted dataset to serve as the initial clustering center. Subsequently, the
shortest hamming distance between other data points and the clustering center
is calculated, followed by the selection of the next clustering center. This process
is iterated until k clustering centers have been selected or the specified number
of iterations has been reached. When calculating the Hamming distance, the fog
node computes the XOR value of the two homomorphically encrypted points and
sends it to the CSP. The CSP decrypts the XOR value, calculates the Hamming
distance, and returns the result to the fog node.

Fog Node

�����
�� ��

pk

�����
��, ��

����
��

�−1 �����
��

Fig. 5: Ciphertext transformation on the fog node.

4.5 Discussion

In this section, we illustrate that our scheme can also support exact analytics.
Since our scheme utilizes HE based on bits, it allows for not only approximate
analytics of the data but also exact analytics of the data. When conducting ex-
act analytics, if there has been an approximate analytics process previously, the
fog node can directly send the homomorphically encrypted base to the cloud
server. Although this increases communication overhead, it eliminates the need
for the cloud server to perform ciphertext transformation. If the fog node has
not transformed the data, it must send both the symmetrically encrypted base
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and the homomorphically encrypted MLE keys to the cloud server for cipher-
text transformation. The cloud server also requests the device to upload the
homomorphic ciphertext of the encryption keys for the deviations and performs
ciphertext transformation on the deviations. Since our encryption is performed
bit by bit, we can recover the original dataset based on the GD recovery process
without performing homomorphic decryption, thus protecting data privacy.

However, as all data is recovered, the volume of the corresponding homomor-
phic ciphertext will be large, resulting in significantly increased computation
overhead, storage, and analytics time costs, substantially affecting system per-
formance. Therefore, our scheme primarily focuses on approximate analytics,
and we plan to design and improve the exact analytics system in future work.

5 Security analytics

In this section, we provide a security analysis of our scheme based on our threat
model (see Section 4.3).

The fog nodes receive encrypted bases and keys from IoT devices. The bases
are encrypted using Fasta, while the keys are encrypted using HE and securely
stored. The fog nodes perform ciphertext transformation entirely in the en-
crypted state, ensuring no information is exposed. Similarly, the cloud servers re-
ceive encrypted deviations from the IoT devices. These deviations are encrypted
using Fasta. Since both the Fasta and HE are secure, neither the fog nodes nor
the cloud servers can recover the data.

Furthermore, since the data used in approximate analytics is based on ho-
momorphically encrypted data, no data information is retained in approximate
analytics.

Honest but curious CSP can only learn the XOR value of two data computa-
tions. With just the XOR value, the CSP cannot recover any information. Since
our scheme uses base data with a length of 329 bits, the probability of directly
guessing the correct two data values is negligible. Moreover, the CSP will only
obtain an XOR result. Even if the CSP selects the corresponding data, it cannot
determine whether the selection is correct.

6 Evaluation

We implemented our prototype based on the HElib library. The prototype com-
prises IoT device, fog node, cloud server, and CSP. The HHE used in the proto-
type combines the BGV algorithm and the Fasta stream encryption algorithm.
The security level for HE is set to 128 bits, and Fasta is configured according
to the security parameters provided in the [3]. Our experiments are conducted
on an Ubuntu 20.04.6 virtual machine created on a laptop equipped with an
AMD Ryzen 5 5600H processor (3.30 GHz), 16 GB (15.9 GB usable) memory,
based on x64 architecture 64-bit operating system. The virtual machine has 20
GB of memory, 8 GB of RAM, and an 8-core processor. The evaluation results
presented in this paper are the averages of over 10 runs.
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We used a real-world dataset [17], ECA&D , to evaluate the performance
of our scheme. ECA&D collects data on weather and climate extremes across
Europe. We selected the wind speed meteorological data for testing. Each piece
of data is 15B in size before processing. For our evaluation, we selected data
from Iceland and Italy from this dataset.

Performance of GD for compressing IoT data. We apply GD to similar
but distinct weather monitoring IoT data from Iceland and Italy, dividing the
data into bases and deviations. The Iceland data we used is 3030 KB; after
deduplication, the base data is 45 KB and the deviation data is 569 KB, achieving
a compression rate of nearly 80%. The Italy data we used is 2356 KB; after
deduplication, the base data is 24 KB and the deviation data is 457 KB, also
achieving a compression rate of nearly 80%. This demonstrates that GD can
significantly reduce the storage overhead for similar but distinct IoT data.

Additionally, we tested the compression rates achieved by applying GD to
datasets from multiple countries within the entire dataset. The results are shown
in Table 2.

Table 2: The compression rates after using GD on datasets from different coun-

tries. The formula for compression rates is
(
1− Compressed Data Size

Original Data Size

)
× 100%

Country Albania Iceland Poland Finland Italy

Percentage 76.63% 77.94% 80.30% 79.46% 81.00%

Country Montenegro Norway Portugal Hungary UK

Percentage 76.86% 83.91% 79.80% 82.44% 80.50%

Performance of using HHE by fog nodes and IoT devices. We eval-
uate the communication overhead and encryption time of IoT devices and fog
nodes using HHE and compare it with the scenario where only HE is used.
First, we assess the communication overhead for both HHE and solely HE. As
shown in the Fig. 6(a), we use the Iceland dataset for evaluation. When directly
encrypting messages using HE and uploading them, each message reaches up
to 9.7 MB (9,715,003 bytes) after encryption. If the entire dataset is uploaded,
the communication overhead will be as high as 3.84 GB. In contrast, with our
scheme, we encrypt the base key, which results in an encrypted base key size
of 9.7 MB (9,715,562 bytes), and each base key symmetrically encrypts 16 mes-
sages, totaling 1645 bits. Uploading the entire dataset in our scheme results
in a communication overhead of 250.17 MB, which reduces the communication
overhead by approximately 93.6%. Similarly, as shown in the Fig. 6(b), for the
Italian dataset, the communication overhead when using only HE is around 2.19

The European Climate Assessment & Dataset project, https://www.ecad.eu.
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GB, whereas using our scheme, the communication overhead is approximately
148.51 MB, reducing it by about 93.5%. As the amount of data transmitted
increases, the communication overhead of using only HE becomes increasingly
unacceptable. Our scheme significantly reduces the communication overhead be-
tween devices and fog nodes. This reduction is achieved because our scheme
employs HHE, allowing us to encrypt only the base keys homomorphically, thus
effectively reducing ciphertext expansion. In contrast, directly using HE results
in significant ciphertext expansion.
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Fig. 6: Communication overhead between IoT devices and fog nodes using the
Iceland dataset and the Italy dataset.

Next, we evaluate the encryption time of IoT devices and fog nodes using
HHE compared to using only HE. We encrypt 16 pieces of data as a group. As
shown in the Fig. 7, If the IoT device directly encrypts a group of data using HE,
it takes 640ms. However, if the IoT device uses our scheme, it performs Fasta
encryption, which takes only 76.3ms to encrypt a group of data. Our scheme
significantly reduces the encryption time for IoT devices. When the fog node
needs to perform approximate analytics, it needs to homomorphically generate a
keystream and then perform symmetric decryption. This process takes 69,284ms
to generate the keystream, and generating the keystream and symmetrically
decrypting a group of data takes 71,683ms in total (in our tests of HHE, we
did not enable parallel processing; theoretically, the time for homomorphic key
stream generation and symmetric decryption can be reduced to approximately
50ms). Our scheme notably reduces the encryption time for IoT devices.

Our scheme significantly reduces the communication overhead between IoT
devices and fog nodes, as well as the encryption time for IoT devices. Although
our scheme introduces additional time consumption when approximate analyt-
ics is required, this additional time is relatively small compared to the overall
time required for subsequent approximate analytics. Furthermore, our scheme
alleviates the burden on IoT devices, which typically have weaker performance,
thereby significantly reducing the overall time and performance loss. Therefore,
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despite the additional time introduced for the fog nodes, this overhead is accept-
able.
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Fig. 7: Comparison of encryption times using the Iceland dataset and the Italy
dataset.

Performance of approximate analytics. We used three metrics to eval-
uate the performance of K-modes. First, the sum of Hamming distances within
each cluster and the Hamming distances between cluster centers are used to as-
sess the clustering quality. For a given dataset, smaller within-cluster Hamming
distances and larger Hamming distances between cluster centers indicate higher
quality (tighter) clusters. Secondly, to compare the quality of cluster centers
obtained from compressed and uncompressed data, we used the elbow method
for both datasets. The smaller the difference in ”elbow” values between the two
datasets, the better the clustering quality will be.
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Fig. 8: The Hamming distance between K-modes cluster centers using the Iceland
dataset and the Italy dataset.



Deduplication and approximate analytics for encrypted IoT data 17

100 200 300 400
Number of Data

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
am

m
in

g 
D

is
ta

nc
e

Within Cluster

(a) Iceland dataset

50 100 150 200
Number of Data

0.0

0.5

1.0

1.5

2.0

2.5

H
am

m
in

g 
D

is
ta

nc
e

Within Cluster

(b) Italy dataset

Fig. 9: The Hamming distance between data within a cluster and the cluster
center using the Iceland dataset and the Italy dataset.

After plotting the elbow curve, we selected the optimal number of cluster
centers to be 7. As shown in Fig. 8 and Fig. 9, the average Hamming distance
within clusters obtained through K-modes approximate analytics is significantly
smaller than the average Hamming distance between cluster centers. Therefore,
the effectiveness of our approximate analytics is well demonstrated.

Through Fig. 10, it can be observed that the elbow points obtained using
approximate analytics and those obtained using exact analytics are almost iden-
tical. Additionally, the cluster centers obtained are also nearly the same. There-
fore, the data obtained through approximate analytics has significant practical
value.
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Fig. 10: The elbow curve for approximate analytics and exact analytics using the
Iceland dataset and the Italy dataset.

Performance of computation time for approximate analytics of ho-
momorphically encrypted data. We selected data from the Iceland dataset
for evaluation. We evaluated the time required for approximate analytics using
different amounts of homomorphically encrypted data, as shown in Fig. 11. Due
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to the substantial time consumption of homomorphic operations, the runtime of
our scheme is relatively favorable.
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Fig. 11: Computation time for approximate analytics.

7 Conclusion

In this paper, we propose a deduplication and approximate analytics scheme
for encrypted IoT data in fog-assisted cloud storage. Our approach combines
GD and MLE to achieve encrypted deduplication of similar but distinct IoT
data, thereby reducing storage overhead. Grounded on HE, our approach enables
approximate analytics without revealing data content, further safeguarding data
privacy. Additionally, we leverage HHE technology, significantly alleviating the
computational burden on IoT devices while reducing communication overhead
between IoT devices and fog nodes. By offloading certain computational tasks to
the fog nodes for processing, we effectively lighten the load on devices, enhancing
the overall efficiency of the system. Moreover, we conduct a thorough security
analytics of the solution, ensuring confidentiality for similar but distinct IoT
data. Finally, through performance evaluation using real-world IoT datasets,
our results demonstrate the solution’s capability to effectively reduce storage
overhead and significantly lower communication costs.

Our solution is also capable of performing exact analytics, albeit at an un-
acceptable computational and storage cost. Our future work involves further
enhancing the computational performance of the solution and exploring meth-
ods to implement efficient exact analytics.
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